Задачи и упражнения по теме «Теорема Римана о конформном отображении»

Во всех упражнениях Ω — область (т. е. открытое связное подмножество \mathbb{C}), $H(\Omega)$ — класс функций, голоморфных в Ω .

Обозначения: ||f|| означает $\sup_{z\in\Omega}|f(z)|$, $\operatorname{dist}(z_0,A)$ — расстояние от точки z до множества A, т. е. $\min_{z\in A}|z_0-z|$, $B_r(a)$ — круг радиуса r с центром в точке a.

Упражнения

1. Пусть $f(z) = z^n + a_1 z^{n-1} + \ldots + a_{n-1} z + a_n$. Выведите из теоремы Руше, что многочлен f имеет n корней в круге |z| < R радиуса $R = 1 + |a_1| + |a_2| + \ldots + |a_n|$.

Замечание. В частности, из этого следует основная теорема алгебры.

2. Пусть $\mathcal{M} \subset H(\Omega)$ — бесконечное семейство функций. Для того чтобы из любой последовательности функций из \mathcal{M} , можно было выделить подпоследовательность, равномерно сходящуюся на любом компакте из Ω к голоморфной функции, необходимо чтобы семейство \mathcal{M} было равномерно ограничено в Ω .

Замечание. Достаточность этого условия доказывалась на лекции.

- **3.** Если последовательность функций f_n , голоморфных в области Ω , равномерно ограничена в Ω и сходится на множестве точек $z_k \in \Omega$ $(k=1,\,2,\,\dots)$, имеющем предельную точку внутри Ω , то она сходится равномерно на любом компакте, содержащемся в Ω .
- 4. Пусть $\Omega \neq \mathbb{C}$ односвязная область, $a \in \Omega$. Докажите, что существует единственная функция $f \in H(\Omega)$, такая что f(a) = 0, f'(a) = 1 и f однолистно отображает область Ω на круг с центром в нуле.

Onpedenehue. Радиус этого круга называется конформным радиусом области Ω в точке a. Мы его обозначим $r(\Omega,a).$

5. Пусть $\Omega \neq \mathbb{C}$ — односвязная область, содержащая ноль. Пусть

$$\mathcal{N} = \{ f \in H(\Omega) : f(0) = 0 \text{ и } f'(0) = 1 \}.$$

Докажите, что минимум $\min_{f \in \mathcal{N}} ||f||$ достигается на функции, однолистно отображающей область Ω на круг |z| < R, причем этот минимум равен $r(\Omega, 0)$.

- **6.** Пусть $\Omega_1 \subset \Omega_2 \neq \mathbb{C}$ односвязные области, $a \in \Omega_1$. Докажите, что
- a) $r(\Omega_1, a) \leqslant r(\Omega_2, a)$;
- б) $r(\Omega_1, a) \geqslant \operatorname{dist}(a, \partial \Omega_1);$
- в) Если $\Omega_1 \subset B_R(a)$, то $r(\Omega_1, a) \leqslant R$.